

Outline

- Wastewater
 - Sources
 - Reasons for analysis
 - Analytical challenges
- Common anions in wastewater
- Anion measurement instrumentation
- Discrete analysis
 - Automated photometric assays
 - Accurate, precise measurement
- Conclusion

Wastewater

- Municipal or household waste
 - Sewage effluent
 - Raw sewage
 - Treated effluent
 - Leachates
 - Surface run-off

Industrial

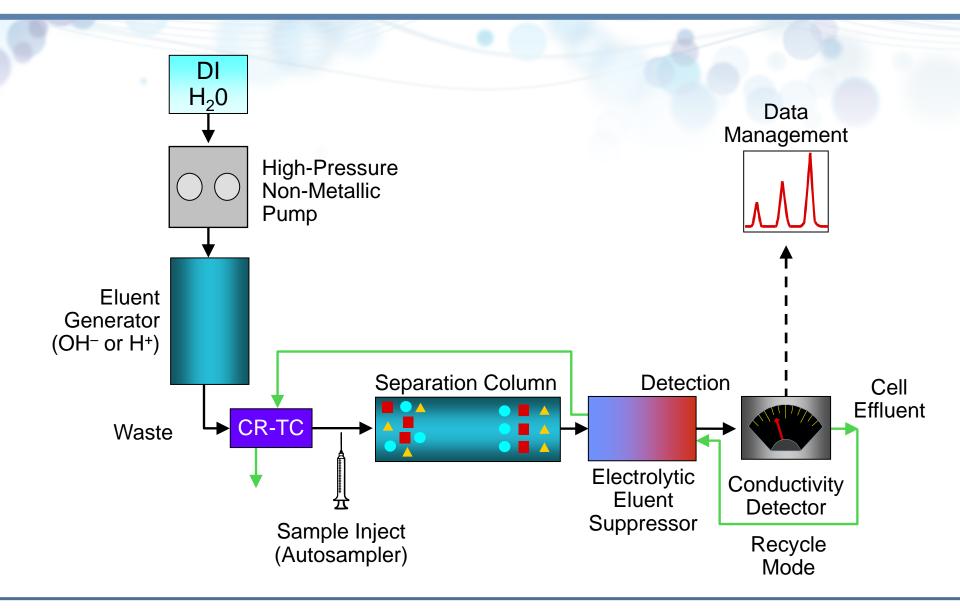
- Production effluents
- Process and cooling waters
- Agriculture
 - Soils leached/extracted into solution

Reasons to Perform Wastewater Analysis

- Monitoring discharge
 - Regulatory limits
- Nutrient Analysis
 - Excessive plant growth in aqueous environments
- Known samples
 - Historical analysis
 - E.g., High chloride level from a treatment facility with a water inlet near the sea/estuary
- Unknown samples
 - Investigative, pollution incident, farm run-off, milk spill, or industrial discharge due to plant failure

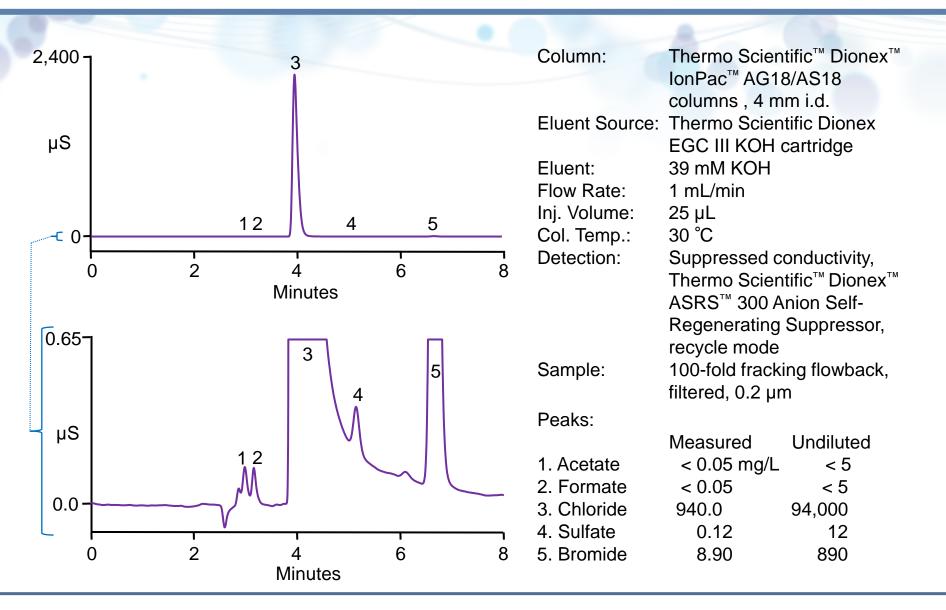
Wastewater Analytical Challenges

- The content of wastewater samples is often unknown
- Accurate, rapid results are needed
- Samples out of calibration range will have to be rerun
 - Ability to automatically perform dilutions pre- or post-run is advantageous
- Samples can contain disparate analyte concentrations
 - May need to run multiple dilutions depending on the analytes of interest

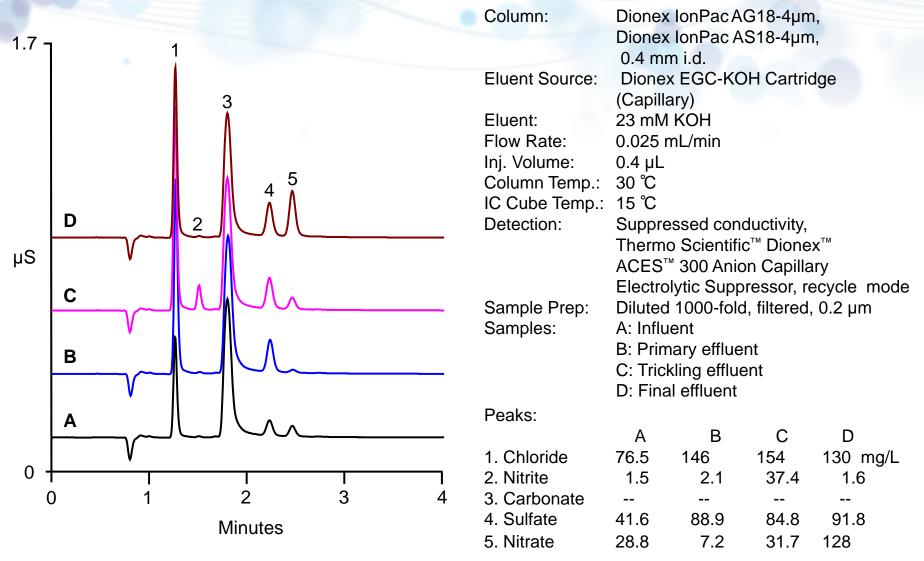

Common Anions in Wastewater

- Inorganic anions
 - Chloride
 - Disrupts nitrification process (treatment)
 - Sulfate
 - Disrupts anaerobic digestion process (treatment)
 - Phosphate, nitrate, nitrite
 - Plant nutrients; phytoplankton blooms
 - Bromide
 - Ozonation, chlorination -> Disinfection by products: brominated trihalomethanes, bromate (carcinogens)
- Organic acids
 - Formic, acetic, propionic acids
 - pH balance

Measurement of Anions in Wastewater


- Ion chromatography (IC)
 - Sample separated into its constituents
 - Automated; conductivity detection
- Manual, wet chemical assays
 - Photometric (spectrometer)
- Continuous flow analysis (CFA)
 - Segmented flow analysis (SFA); flow injection analysis (FIA); sequential injection analysis (SIA)
 - Semi-automated; photometric
- Discrete analysis
 - Individual tests for specific analytes
 - Automated; photometric

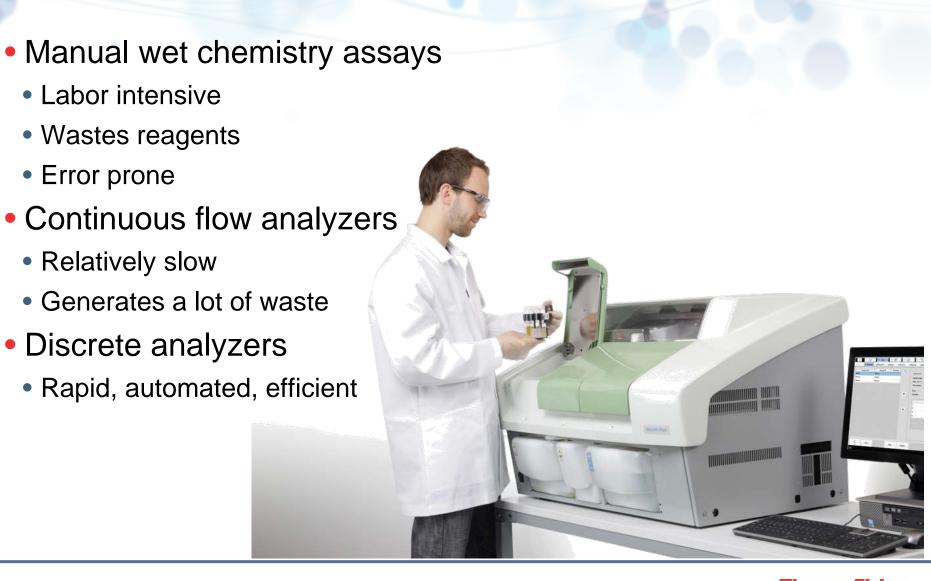
Ion Chromatography System


ThermoFisher SCIENTIFIC

Anions in Hydraulic Fracturing Flowback Wastewater

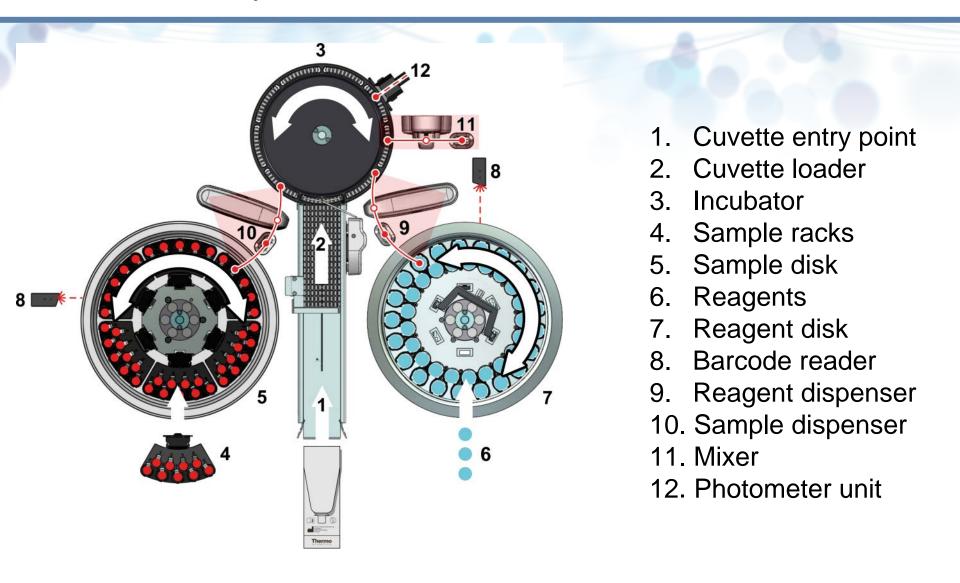
Thermo Fisher SCIENTIFIC

Fast Determination of Inorganic Anions in Municipal Wastewater



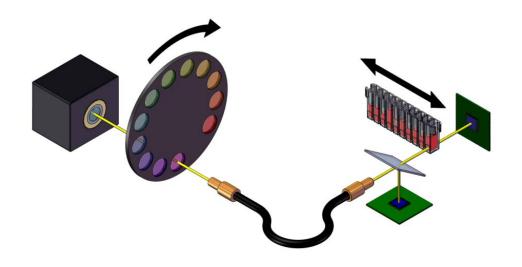
A Complete Family of Ion Chromatography Systems

Anion Determinations Using Photometric Assays


SCIENTIFI

Benefits of Automated Discrete Analysis

- Flexible various tests can be performed on each sample; there is no limitation on number of tests
- Fast ready for immediate analysis, no reagent priming, no method changeover time
- Precise specific measurements with high reproducibility, achieves low detection levels
- Minimal carry-over each reaction takes place in its own reaction cuvette


Discrete Analysis Process

Fast Photometric Measurement

- Spectral range 275 880 nm
 - 12 filter positions
- Fast measurement with a flash lamp
 - Main and side wavelengths measured at the same time
 - Water blank measured in all wavelengths at the same time

Flexible, Reliable, Temperature-Stabilized Measurement

- Several calibration options
 - Factor, Bias, Linear, Logit-log, Spline, Polynomial, Point-to-point
- Possibility to add up to four reagents per test
 - Automation even for the most complex methods
- Real-time QC program assures reliable performance

 Measurement temperature can be adjusted between 25 °C and 60 °C

Flexible Sample Management

Sample volumes from 2 to 120 μL

- Any mix of sample containers
 - 0.5, 2.0 and 4.0 mL sample cups
 - 5.0, 7.0 or 10.0 mL sample tubes
- Automatic identification via internal barcode reader
- Tests can be requested individually or using a profile

Easy Reagent Handling

- Reagent volumes from 2 to 240 µL
- Reagent containers
 - 10 and 20 mL vials
- Barcoded system reagent containers are automatically identified
 - Non-system reagents can be entered without barcodes
- Clearly displayed
 - Real-time reagent volume
 - Remaining test capacity
 - Expired reagents flagged automatically

Comprehensive Data Handling

- Application parameter values readable from barcode or electronically from a file
- Results
 - Calculated from both measured and off-line results
 - Automatically flagged in case of
 - Abnormal values
 - Repeats
 - Out-of-limit control values
- Long term storage of results
 - Associated calibrations
 - Reagent lot data

Reporting Options

Reports available

- Spreadsheet export for further calculations
- Export to LIMS
- Printouts
- PDF files

Calibration results Page NO2 2mg/l Version number 1.4 Date 2014-02-17 User Dealer Time 12:53:25 Software version: 4.1.1 0,999956 Status NO2 2mg/l Coeff. of deter. 0,999956 Status Total factor 0,387 Accepted 2014-02-13 10:36 Errors User name Dealer Errors Factor 0,387 Errors Factor 0,387 Errors NO2-0 0,001 -0,001 0,000 Default NO2-5TD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,288 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default <th>1/1</th>	1/1
Date 2014-02-17 User Dealer Time 12:53:25 Software version: 4.1.1 0,999956 Status NO2 2mg/l Coeff. of deter. 0,999956 Status Total factor 0,387 Accepted 2014-02-13 10:36 0.387 Checked 2014-02-13 10:36 0.387 User name Dealer 0.387 Factor 0,387 0.003 Factor 0,387 Errors Factor 0,387 Errors Errors Col/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,522 0,201 0,200 Default User and User and	
Time 12:53:25 Software version: 4.1.1 Test NO2 2mg/l Coeff. of deter. 0,999956 Status Total factor 0,387 Accepted 2014-02-13 10:36 Total factor 0,387 Checked 2014-02-13 10:36 Errors Errors Factor 0,387 Errors Errors Factor 0,387 Errors Errors Coll/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
Test NO2 2mg/l Coeff. of deter. 0,999956 Status Total factor 0,387 Accepted 2014-02-13 10:36 Total factor 0,387 Checked 2014-02-13 10:36 Coeff. of deter. 0,387 User name Dealer Comment Errors Errors Factor 0,387 Errors Errors Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
Status Total factor 0,387 Accepted 2014-02-13 10:36 0,387 Checked 2014-02-13 10:36 0,387 User name Dealer 0 Comment - - Errors 0,387 - Bias 0,003 - Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default - - NO2-5TD 0,130 0,049 0,050 Default - - NO2-STD 0,522 0,201 0,200 Default - - NO2-STD 0,743 0,287 0,286 Default - - NO2-STD 1,038 0,401 0,400 Default - -	
Status Total factor 0,387 Accepted 2014-02-13 10:36 0,387 Checked 2014-02-13 10:36 0,387 User name Dealer 0 Comment - - Errors 0,387 - Bias 0,003 - Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default - - NO2-5TD 0,130 0,049 0,050 Default - - NO2-STD 0,522 0,201 0,200 Default - - NO2-STD 0,743 0,287 0,286 Default - - NO2-STD 1,038 0,401 0,400 Default - -	
Accepted 2014-02-13 10:36 Checked 2014-02-13 10:36 User name Dealer Comment Factor 0,387 Bias 0,003 Errors Call/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
User name Dealer Comment Dealer Errors Calc. conc. Given conc. Lot Errors Factor 0,003 Older conc. Lot Errors Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
Comment Errors Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors N02-0 0,001 -0,001 0,000 Default N02-STD 0,130 0,049 0,050 Default N02-STD 0,522 0,201 0,200 Default N02-STD 0,522 0,201 0,200 Default N02-STD 0,743 0,287 0,286 Default N02-STD 1,038 0,401 0,400 Default	
Comment Errors Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
Errors 6,387 Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors N02-0 0,001 -0,001 0,000 Default N02-STD 0,130 0,049 0,050 Default N02-STD 0,522 0,201 0,200 Default N02-STD 0,522 0,201 0,200 Default N02-STD 0,743 0,287 0,286 Default N02-STD 1,038 0,401 0,400 Default	
Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors N02-0 0,001 -0,001 0,000 Default N02-STD 0,130 0,049 0,050 Default N02-STD 0,260 0,100 0,100 Default N02-STD 0,522 0,201 0,200 Default N02-STD 0,743 0,287 0,286 Default N02-STD 1,038 0,401 0,400 Default	
Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors N02-0 0,001 -0,001 0,000 Default N02-STD 0,130 0,049 0,050 Default N02-STD 0,260 0,100 0,100 Default N02-STD 0,522 0,201 0,200 Default N02-STD 0,743 0,287 0,286 Default N02-STD 1,038 0,401 0,400 Default	
Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default	
NO2-STD 1,038 0,401 0,400 Default	
2	
₽ ₽ ₽ ₽ 1.5 ₽	
8	
1	
N N N N N N N N N N N N N N N N N N N	
0.5	
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	
Conc. (mg/l)	

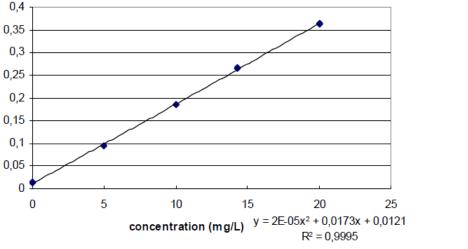
Intuitive User Interface

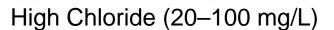
- Graphical user-interface
 - Provides fast guidance
 - Includes context-sensitive help
 - Available in different languages
- Secure and traceable data handling
 - Different user groups can have different access rights

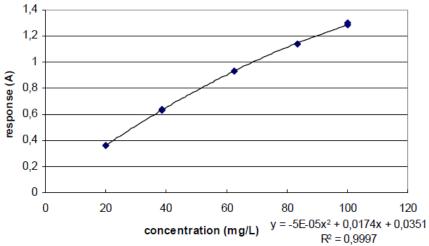
Touch screen option

Wide Selection of Tests Optimized for Anions

- Chloride
- Fluoride
- Nitrate Hydrazine
- Nitrate Enzymatic
- Nitrate Vanadium
- Nitrite
- Ortho-Phosphate
- Sulfate
- T.O.N
- TKN as N
- TP as P


- Additional analytes
 - Alkalinity
 - Ammonia
 - Calcium
 - Chromium (VI)
 - Magnesium
 - Silica
 - Total Hardness
 - Urea
 - pH
 - Conductivity




Chloride: Calibration Curves

Using Thermo Scientific Chloride R1 reagent

Low Chloride (0–20 mg/L)

response (A)

Chloride: Precision and Accuracy

Sample	Avg* Result (mg/L)	Std. Dev.	Avg* % Recovery	Std. Dev.	Accuracy
Cl_Low_10	10.01	100.1	100.1	1.52%	1.00
Cl_High_80	83.18	0.56	104.0	0.70%	1.04

*n = 20

Chloride: Method Detection Limit

		A
Sample	Result (mg/L)	% Recovery
Cl_Low_0.5	0.503	101
Cl_Low_0.5	0.514	103
Cl_Low_0.5	0.485	97
Cl_Low_0.5	0.474	95
Cl_Low_0.5	0.482	96
Cl_Low_0.5	0.410	82
Cl_Low_0.5	0.407	81
Avg.	0.468	94
Std. Dev.	0.043	
MDL	0.14	

Chloride: Matrix Spiking

Sample	Result (mg/L)	% Recovery	RPD
Wastewater*	443.0		
Wastewater_MS50	489.0	101	
Wastewater_MSD50	489.8	103	0.2
Saline water (dil)*	140.4		
Saline water (dil)_MS50	187.3	103	
Saline water (dil)_MSD50	186.9	102	0.2

50 mg/L chloride spike; Saline water was diluted 100-fold; RPD = relative percent difference

* Corrected for volume

Thermo Scientific System Reagents

Optimized system solution

- System applications for water analysis
- Loadable application data from 2D barcode
- Optimized kit sizes and on-board stability
- Wide range of calibrators
- Productivity and efficiency
 - Ready-to-use liquid reagents eliminate reagent preparation
 - Minimal reagent waste
 - Bar-coded reagent vials provide easy and reliable identification
 - lot, expiration date, vial size
 - real-time reagent monitoring

Range of Discrete Analyzers for Wastewater Analysis

	Thermo Scientific™ Gallery™/ Thermo Scientific™ Aquakem™ 200	Aquakem 250	Gallery Plus	Aquakem 600
Capacity (tests/hr)	Up to 200	Up to 250	Up to 350	Up to 600
Incubation temperature	25 to 60 °C (Gallery) 37 °C (Aquakem)	37 °C	25 to 60 °C	37 °C
Optional units	pH and Conductivity (Gallery) Cadmium reduction(Aquakem)	Cadmium reduction	pH and Conductivity	Cadmium reduction and automation

Conclusions

- Determination of anions in wastewater is critical to verify its suitability for discharge
- Ion chromatography measures the conductivity of separated molecules while discrete analyzers use photometric assays that are specific for individual analytes

Discrete analyzers

- Automate photometric assays for fast, specific, high-throughput anionic measurements of up to 600 tests/hour
- Assays produce accurate, precise data even from challenging matrices such as wastewater

Thank You!

ThermoFisher SCIENTIFIC

The world leader in serving science

