Making the Transition From a Quantitation Lab to a Quant*Information* Lab

Chris Holliman Global Small-Molecule Discovery Bioanalytical Phamacokinetics, Dynamics & Metabolism

Acknowledgements

- Andre Negahban
- Jason Baricklow
- Hongying Gao
- The Team at Pfizer

Thermo Fisher

- Nick Molinaro
 - Rich Klein
 - Pat Bennett
 - The Team at Thermo

Our Group and Deliverables

- Small molecule quantitation
- Discovery, Non-Regulated
- Biological matricies
- Protein Precipitation
- Triple-Quadrupole Detection
- Multiple Reaction Monitoring

milk

We're In a Pinch

How Do We Survive in the Pinch?

High Resolution High Mass Accuracy Quantitation

Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): "Where is the crossover point?"

A. Kaufmann, P Butcher, K. Maden, S. Walker, M. Widmer Official Food Control Authority, Switerzerland *Analytica Chimica Acta 673 (2010) 60–72*

Optimization of Exactive Orbitrap[™] acquisition parameters for quantitative bioanalysis

Richard L Wong, Baomin Xin & Timothy Olah Bristol-Myers Squibb *Bioanalysis*, April 2011, Vol. 3, No. 8, Pages 863-871

The Candidate: Exactive[™] Overview

- Exactive Hardware Overview
 - No Data Dependent Scanning
 - Quantification & Qualitative
 - High Resolution and Accurate Mass
 - Full Scan MS
 - Positive / Negative Switching
 - Optional HCD Fragmentation
- Resolution

100,000 at 1 scan per second 10,000 at 10 scans per second

Mass accuracy
<3 ppm for 48 Hours

•Many ions in the Orbitrap generate a complex signal whose frequencies are determined using a Fourier Transformation

What we look for in a candidate

We Perform Small Molecule Quantitation in a Disovery Environment

- Quantitation Fundementals
 - Accuracy
 - Precision
 - Sensitivity
 - Selectivity
 - Ruggedness
- The Ability to "Crank"
- The Ability to Solve Tough Bioanalytical Issues (Diversity of Capabilities)

The Interview

- Can the Exactive Perform Small Molecule Quantitation Day In/Day Out in Our Work Environment?
- How Generic is the Methodology? Do You Even Have to Know Mass Spec or Do You Just Need to Know the Molecular Formula to Quantitate?

The Interview

- Accela UPLC and Exactive Mass Spectrometer
 - Skilled Bioanalyst with no Orbitrap Experience
 - Generic Chromatographic 3-minute Gradient
 - Method Building = Input of Exact Mass
 - Diverse Portfolio Chemical Space
 - 3 Therapeutic Areas, ~20 Compounds, 25 Studies
 - Studies are analyzed on both Triple-Quad and The Exactive.
 - 30 Days

The completely blinded approach

Processing Method Spreadsheet

📳 AutoPMD_pfizer.xls [Compatibility Mode]																	
	А	В		С	D		E	F	G	Н	1				J		
1	Formula	MIMW	Ca	alculate	[M+H]	+ [M+	NH4]+	[M+Na]+	[2M+H]+	[2M+Na]				Pos lon	s to Monit	or	
2	C22H26O3N		IS	,	Put co in this	mpound na	ame										
3	C24H27O2N		DrugX		in this	column											
4	C26H32O2N		DrugY														
5	C24H29O2N		DrugZ														
6																	
7																	
8																	
9																	
10																	
14 4		¢1								14							
Au	AutoPMD_pfizer_pg2.xls [Compatibility Mode]																
	A	-															
		B	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q
1		В	С	D	E	F	G	Н	I	J	К	L	Μ	N	0	Ρ	Q
1 2	Name	B lons to be monitored	C Polarity	D Expected R.T. (min)	E <u>Window</u> (sec)	F <u>1STD12</u>	G 2.5STD11	H 5STD10	 <u>10STD9</u>	J <u>25STD8</u>	K <u>50STD7</u>	L <u>100STD6</u>	M 250 STD5	N <u>500 STD4</u>	0 <u>1000STD3</u>	P 2500 STD2	Q 5000STD1
1 2 3 4	<u>Name</u> IS	B lons to be monitored	C Polarity +	D Expected R.T. (min)	E Window (sec) 30	F <u>1STD12</u>	G <u>2.5STD11</u>	H <u>5STD10</u>	 <u>10STD9</u>	J <u>25STD8</u>	K <u>50STD7</u>	L <u>100STD6</u>	M 250 STD5	N <u>500STD4</u>	0 <u>1000 STD3</u>	P 2500 STD2	Q 5000 STD1
1 2 3 4 5	<u>Name</u> IS DrugX	B lons to be monitored	C Polarity + +	D Expected R.T. (min)	E <u>Window</u> (sec) 30 30	F <u>1STD12</u> 1	G <u>2.5STD11</u> 2.5	H <u>5STD10</u> 5	I <u>10STD9</u> 10	J <u>25STD8</u> 25	K <u>50STD7</u> 50	L <u>100STD6</u> 100	M <u>250STD5</u> 250	N <u>500STD4</u> 500	0 <u>1000STD3</u> 1000	P <u>2500STD2</u> 2500	Q 5000STD1
1 2 4 5 6	<u>Name</u> IS DrugX DrugY	B	C Polarity + + +	D Expected R.T. (min)	E <u>Window</u> (sec) 30 30 30	F <u>1STD12</u> 1 1	G 2.5STD11 2.5 2.5 2.5	H <u>5STD10</u> 5 5	I <u>10STD9</u> 10 10	J 25STD8 25 25 25	K <u>50STD7</u> 50 50	L <u>100STD6</u> 100 100	M <u>250STD5</u> 250 250	N <u>500STD4</u> 500 500	0 <u>1000 STD3</u> 1000 1000	P 2500 STD2 2500 2500 2500	Q 5000STD1 5000 5000
1 2 3 4 5 6 7	Name IS DrugX DrugY DrugZ	B	C Polarity + + +	D Expected R.T. (min)	E <u>Window</u> (sec) 30 30 30 30	F <u>1STD12</u> 1 1 1	G 2.5STD11 2.5 2.5 2.5 2.5	H <u>5STD10</u> 5 5 5 5	I <u>10STD9</u> 10 10 10	J 255TD8 25 25 25 25	K <u>50STD7</u> 50 50 50	L 100STD6 100 100 100	M 250STD5 250 250 250 250	N 500STD4 500 500 500 500	0 <u>1000STD3</u> 1000 1000 1000	P 2500STD2 2500 2500 2500 2500	Q 5000STD1 5000 5000 5000 5000
1 2 3 4 5 6 7 8	Name IS DrugX DrugY DrugZ	B	C Polarity + + + + +	D Expected R.T. (min)	E Window (sec) 30 30 30 30 30 30	F <u>1STD12</u> 1 1 1	G 2.55TD11 2.5 2.5 2.5	H <u>55TD10</u> 5 5 5 5	I <u>10STD9</u> 10 10 10	J 255TD8 25 25 25 25	K 50STD7 50 50 50	L 100STD6 100 100 100	M 250STD5 250 250 250 250	N 500STD4 500 500 500	0 1000STD3 1000 1000 1000	P 2500STD2 2500 2500 2500 2500	Q 5000STD1 5000 5000 5000
1 2 3 4 5 6 7 8 9	Name IS DrugX DrugY DrugZ	B	C Polarity + + + + + +	D Expected R.T. (min)	E Window (sec) 30 30 30 30 30 30	F <u>1STD12</u> 1 1 1	G 2.55TD11 2.5 2.5 2.5	H 55TD10 5 5 5 5	I <u>10STD9</u> 10 10 10	J 255TD8 25 25 25 25	K <u>50STD7</u> 50 50 50	L 100STD6 100 100 100	M 250STD5 250 250 250	N 500STD4 500 500 500	0 <u>1000STD3</u> 1000 1000 1000	P 2500STD2 2500 2500 2500	Q 5000STD1 5000 5000 5000
1 2 3 4 5 6 7 8 9 10	Name IS DrugX DrugY DrugZ	B	C Polarity + + + + + + + + +	D Expected R.T. (min)	E <u>Window</u> (sec) 30 30 30 30 30 30 30 30	F <u>1STD12</u> 1 1 1	G 2.5STD11 2.5 2.5 2.5 2.5	H <u>55TD10</u> 5 5 5	1 105TD9 10 10 10	J 255TD8 25 25 25 25	K <u>50STD7</u> 50 50 50	L 100STD6 100 100 100	M 250STD5 250 250 250	N 500STD4 500 500 500	0 <u>1000STD3</u> 1000 1000 1000	P 2500STD2 2500 2500 2500	Q 5000STD1 5000 5000 5000 5000 5000 5000 5000 50
1 2 3 4 5 6 7 8 9 10 11	Name IS DrugX DrugY DrugZ	B	C Polarity + + + + + + + + +	D Expected R.T. (min)	E <u>Vindow</u> (sec) 30 30 30 30 30 30 30 30 30 30	F <u>1STD12</u> 1 1 1	G 2.5STD11 2.5 2.5 2.5	H <u>55TD10</u> 5 5 5	1 <u>10STD9</u> 10 10 10	J 255TD8 25 25 25 25	K <u>50STD7</u> 50 50 50	L 100STD6 100 100 100	M 250STD5 250 250 250	N 500STD4 500 500 500	0 <u>1000STD3</u> 1000 1000 1000	P 2500STD2 2500 2500 2500	Q 5000STD1 5000 5000 5000 5000 5000 5000 5000 50
1 2 3 4 5 6 7 8 9 10 11 12 12	Name IS DrugX DrugY DrugZ	B lons to be monitored	C Polarity + + + + + + + + + + + +	D Expected R.T. (min)	E Window (sec) 30 30 30 30 30 30 30 30 30 30 30 30 30	F <u>1STD12</u> 1 1 1	G 2.5STD11 2.5 2.5 2.5	H <u>55TD10</u> 5 5 5	1 <u>10STD9</u> 10 10 10	J 255TD8 25 25 25 25	K 50STD7 50 50 50	L 100STD6 100 100 100	M 250STD5 250 250 250	N 500STD4 500 500 500	0 <u>1000STD3</u> 1000 1000 1000	P 2500STD2 2500 2500 2500	Q 5000STD1 5000 5000 5000 70 70 70 70 70 70 70 70 70 70 70 70

- Enter Chemical Formula's and compound Names, sheet 1
- Hit the Calculate button to calculate exact masses
- Copy Standard concentrations to all compounds, sheet 2
- Run the auto.pmd executable to create the processing method

Updating Method – Adduct Selection

Our Experience: Sensitivity

Calibration Curve on Exactive

Our experience leads us to anticipate that a new compound will typically Give us linearity of at least 3-orders of magnitude and will be on the order of what we see on our previous generation triple quads.

Pfizer Internal Use Only

Our Experience: Ruggedness Day 2

Peak Area Ratio

Plate	Mean	Std Dev	%CV
1	1.21	0.150	12%
2	1.16	0.039	3.3%
3	1.12	0.040	3.6%
4	1.08	0.041	3.8%
5	1.05	0.034	3.2%
6	0.967	0.045	4.6%
Overall	1.10	0.106	10%

Our Experience: Ruggedness

- Two days of "Ruggedness" testing returned a mean value of 1.10 for the drug/Internal Standard Ratio and a plateto-plate mean (n=12) %CV of 10%
- The instrument was re-calibrated and the transfer tube exchanged, every 2-3 days as a matter of routine maintenance 15-30 min.

Quant Information

- Not *currently* our strength
 - Metabolite Scouting
 - Biomarker
 - Peptide and Protein Digests
- All investigations were performed at a "proof of concept" level and all generated positive and encouraging results.

Hiring Decision

- Sorry we found someone else
- Evaluation of the Q-Exactive
 - Three Therapeutic Areas
 - 8 of our most difficult Triple-Quad/Exactive Compounds

Your Hired

	LLOQ (ng/	mL				

What's Next? Quant*Information* We're not the First Industry to Contract

