

Quantitative analysis of genotoxic impurities by high resolution mass spectrometer

Christine Gu¹, Kate Comstock², Jessica Wang²

¹ Genentech, South San Francisco, CA ²Thermo Sci. San Jose, CA Thermo Scientific Annual Mass Spectrometry Users Meeting 20 Sept 2011

Outlines

- Background of Genotoxic Impurities
- New Instrumentation
- A Case Study Oncology Small Molecule

Genotoxicity

- Induces genetic damage and fixation
 - Gene mutation
 - Larger scale chromosomal damage
 - Recombination and numerical chromosome changes
- Causes cancer or heritable changes
 - Carcinogenicity more easily detected

Definition of impurity classifications

Impurity classification	Definition	Guidance on control of human exposure ^b		
Category 1	Precedent for mutagenicity and carcinogenicity	PDE or TTC		
Category 2	Mutagens with unknown carcinogenic potential or a "close-in" structural analog			
Category 3	Alerting structure—unique and unknown mutagenic potential			
Category 4	Alerting structure—non- unique and qualified in comparison to API	ICH Q3		
Category 5	No structural alerting features			

Reg Tox and Pharm, 2006

Threshold of Toxicological Concern (TTC)

A TTC value of 1.5 µg/day intake of a genotoxic impurity is considered to be associated with an acceptable risk.

From this threshold value, a permitted level in the active substance can be calculated based on the expected daily dose. Higher limits may be justified under certain conditions such as short-term exposure periods.

Case study – An oncology small molecule

- 6 Compounds with Structural Alerts (Category 3)
 - Aromatic Nitro
 - Aromatic Azo
 - Aromatic Azoxy
 - Aromatic Hydroxylamine
 - Aromatic Amine/Amide
- Goal of the study

To develop a reproducible and sensitive LC-MS method to quantify whether the amounts of PGIs are above or below the controlled level in final API lot. (< 1.5 ug/day)

Schematic of Q ExactiveTM Benchtop LC-MS/MS

A Member of the Roche Group

Q ExactiveTM Specifications

- Mass range for full scans: 50 < m/z < 4000
- Scan range: first mass < m/z < 15 x first mass
- Max resolution: 140,000
- Scan speed: up to 12 HZ
- Intra-scan dynamic range > 5000:1
- < 5ppm external</p>
- 1 ppm internal
- +/- switching within 1 sec

Chromatograph

Column	ACE 3 C18, 100x4.6mm			
Column temperature	25 °C			
Flow rate	1 mL/min			
Injection volume	5 ul	5 ul		
Auto-sampler temperature	4 °C			
Detection wavelength	UV at 265 nm			
Sugar- phospate backbone Mobile phase	A: 0.1% Acetic acid in water B: ACN			
Bases	Time (min)	%A	%В	
	0	90	10	
A	7	10	90	
Gradient	9.5	10	90	
DC A	9.6	90	10	
	14	90	10	

Mass spectrometry

• Mass spectrometer: Thermo Scientific Q-Exactive benchtop high resolution, accurate mass system

• Resolution: R=70,000 FWHM at full scan; R= 35,000 FWHM at MSMS

• Ion source: HESI-II, positive

• Spray voltage: 3.8 kV

Vaporizer temp: 500 °C

S-lens level: 50%

Sheath/Aux gas: 50/15 units with N2

Capillary temp: 320 °C

• HCD collision: NCE 40

Experiments

Full MS Experiment

Scan event 1, 150-500 m/z (Full mass)

Scan event 2, MS/MS of top 1 from the inclusion list (top 1 data-dependent scan)

t-SIM Experiment

Single ion monitoring of masses of interest

SIM time ranges were adjusted in response to changes in analyte retention

Sample preparation

Calibration solutions, with concentrations of 0.1, 0.5, 1, 5, 10, 50 ppm, were prepared by serial dilution of the stock solution in MeOH with 5 ng/mL of internal standard, d5-alprazolam, and 4 mg/mL of API.

Selected lot samples, were prepared at 4 mg/mL in MeOH with 5 ng/mL of internal standard, d5-alprazolam.

Mass accuracy of Alprazolam-D5, ISTD

Typical SIC chromatogram at 1 ppm level in API

Using full MS method

Using tSIM method

Representative calibration curve of cmpd A over the range of 0.1-50 ppm, linear regression and 1/x weighting

Triple Quad vs. Q-Exactive (at Limit of Quantitation, 1 ppm)

	PGI		Triple Quad	HR-MS
		S/N	553	21122
A	Α	%RSD	14.4	1.5
		S/N	2755	297
	A N T	%RSD	3.5	1.8
C (See C)×() G	S/N	882	1450
AOJ	Sugar-	%RSD	1.7	3.9
	backbone	S/N	448	1721
Z C ∞) (Base D	%RSD	4.9	3.1
4		S/N	1127	108265
	O A	%RSD	0	1.1
	C (NG	S/N	1047	INF
GNIC	(N) (N)	%RSD	14.7	3.8

PGIs concentrations in selected lot samples

	Lot1		Lot2		Lot3	
	Mean measured conc. (ppm)	% RSD	Mean measure d conc. (ppm)	% RSD	Mean measured conc. (ppm)	% RSD
A X) T	<0.1	NA	<0.1	NA	<0.1	NA
C (%) G B	0.442	3.0	0.457	0.5	0.446	2.7
A (Sugar- C	<0.1	NA	<0.1	NA	< 0.1	NA
phospate backbor D	0.419	0	0.404	0	0.440	0.5
A Bases E	<0.1	NA	<0.1	NA	< 0.1	NA
F G W C	<0.1	NA	<0.1	NA	<0.1	NA
Д (Т) ф) A						

Conclusion

- High resolution mass spectrometer, Q-Exactive, coupled with HPLC provides a sensitive and quantitative method to detect trace-level genotoxic compounds in the presence of large amount of APIs.
- Compared with traditional triple-quad method, there is no sensitivity and selectivity compromise observed on Q-Exactive.
- Quantitative results showed that the levels of all 6 potential genotoxic impurities in final APIs are below 10 ppm; which is below the controlled level.

Acknowledgement

Genentech SMACQC
Larry Wigman
CJ Venkatramani
Emily Vanhassel
James Girotti
Nate Segraves

Alan Deese

Thermo Scientific Yingying Huang Yan Chen

