

Recent Developments in Thermo Scientific LSMS Proteomics Software

David Horn

Proteomics Software Strategic Marketing

Manager

September 22, 2011

The world leader in serving science

What's New In Proteomics Software For 2011?

- Thermo Scientific Proteomics Software Portal
- Proteome Discoverer 1.3
 - Percolator, PhosphoRS, Annotation
- ProteinCenter
 - Released early 2011
- SIEVE 1.3 SP2
 - ROC analysis, improved statistics, support for new instruments
- Pinpoint 1.2
 - Improved HR/AM support, support for new instruments
- SimGlycan
 - Glycomics software
- Protein Deconvolution 1.0
 - ReSpect[™] and Xtract for intact protein mass determination

Thermo Scientific Proteomics Portal

Web server for biological interpretation of proteomics data

Key features

- Dataset comparison
- Overrepresentation analysis (GO terms, Pfam, keywords, pathways, etc.)
- Heat maps and profiling of quantitative proteomics data
- KEGG pathway analysis
- Comparison to previously published results

Proteome Discoverer, ProSightPC, Sieve

More information at:

http://www.proxeon.com/productrange/data_interpretation/introduction/in dex.html or the Thermo Scientific proteomics web portal

ProteinCenter™

- Protein-centric data warehouse specifically designed for interpretation of proteomics data
- >16 million protein sequences from the major public protein databases distilled from 130 million accession codes from past and present versions
- The consolidated database is updated bi-weekly

Independent of input format, searched protein database, and database version

See in which data set each protein has been observed. Determine true overlaps.

С	Tear	Fluid	Proteome
---	------	-------	----------

						Data cat												
Acc. Key	No	0	Description	S			Cluster	Gene	AA	AS	Fr	r Tax	Molecular Functions	Cellular Components	Biological Processes	тм	SP	Рер
4502105	3		annexin IV		`₩		-	ANXA4	321		С	Hs				0		7
32189392	<u>3</u>		peroxiredoxin 2 isoform a		`₩		-	PRDX2	198	۲ ⁴	С	Hs				1		6
67461552	<u>3</u>		Erlin-1		`₩		-	ERLIN1	346	۲ ⁴		Hs				0	÷.	2
42656431	<u>3</u>	≙	similar to FKSG30		`₩		-	LOC389036	534			Hs				0		3
20357529	<u>3</u>		guanine nucleotide-binding pro		`₩			GNB2	340			Hs				0		5
4507677	<u>3</u>		heat shock protein 90kDa beta,		`₩			HSP90B1	803			Hs				1	3	8
67089147	<u>3</u>		farnesyl-diphosphate farnesylt		`₩		-	FDFT1	417			Hs				4		7
IPI00412577.1	<u>3</u>	≙	34 kDa protein		`∉⁄			ANXA2	302	Υ.		Hs				1		5
33188452	3	≙	peroxiredoxin 2 isoform b		`₩		-	PRDX2	147	۲ ⁴		Hs				0		6
ENSP00000237530	3		-		``#∕	111	-	RPN2	676	5		Hs				5		8

ProteinCenter example – Phosphopeptide profiling

- Taken from the poster "Bioinformatics analysis of quantitative proteomics datasets using soft clustering algorithms"
- EGF stimulation of HeLa cells, profiling performed in ProteinCenter

- Cluster 1: phosphopeptides that increase in abundance over time
- Over-representation analysis shows
 - MAPK, ErbB pathways overexpressed
 - Phosphorylation over-represented

Over-represented KEGG pathways

Analysis data set: group 1 Reference data set: group 7

<<	<	1	2	3	≥	$\geq \geq$

Description	Occurrence	Count	Ref. Count
MAPK signaling pathway (hsa)		<u>6</u>	<u>0</u>
ErbB signaling pathway (hsa)		<u>5</u>	<u>0</u>
Insulin signaling pathway (hsa)] Z	1
Gap junction (hsa)] 4	<u>0</u>
GnRH signaling pathway (hsa)		4	<u>0</u>
Acute myeloid leukemia (hsa)		<u>4</u>	<u>0</u>
Chronic myeloid leukemia (hsa)		4	<u>0</u>

Proteome Discoverer + ProteinCenter + Pinpoint for kinase activity profiling

SIEVE

- Label-free quantification software for high resolution accurate mass (HR/AM) proteomics and small molecule data
- Current Version: SIEVE 1.3 SP2
- Key features
 - Several types of analyses, including A vs. B, time course, receiver operating characteristics (ROC) curves, non-differential single class analysis
 - Powerful chromatographic alignment algorithm
 - Powerful statistical analysis, including principal components analysis (PCA) and K-means clustering
 - Improved integration with Proteome Discoverer
 - Results can be exported to ProteinCenter and Pinpoint

SIEVE Processing Workflow

Chromatographic Alignment

Viewing frames in SIEVE

SIEVE Protein Report

• Which proteins and peptides are found in my differential experiment?

- At what ratios?
- How many distinct peptides?

• What is the probability that the protein is differentially expressed?

Proteins→Peptides→

SIEVE community portal

http://sieve.vastsci.com

- Demo software available for instant download 30 day free trial license, after license expires software becomes a viewer.
- Publication page with direct links to application notes, poster, presentation and peer reviewed publications.
- Direct links in software to portal for topic specific help, which allows for continuous updating
- Over 30 record video tutorials to guide the user through the software.

SIEVE 2.0—Revolutionary Breakthrough for Metabolomics

SIEVE 2.0 accelerates mining of Metabolomics datasets with optimized component detection and dramatically decreased false positives.

Features	SIEVE 1.3	SIEVE 2.0
Component Elucidation	Framing by Intensity	Chromatographic peak detection
Alignment	Aligns TIC	Aligns Components
Background correction to reduce false positives		\checkmark
Grouping of adducts, dimers, isotopes		✓
Look for missing peaks		\checkmark
Statistical tools	\checkmark	\checkmark
Graphical displays	\checkmark	✓
Database searches (local & on-line)	\checkmark	\checkmark

• Software for SRM and HR/AM targeted quantitative proteomics

Key features

- Targeted relative and absolute peptide quantification
- Support for all Thermo MS platforms (TSQ, Orbitrap, ion trap)
- Q Exactive, OT Elite support in Pinpoint 1.2
- Accepts input data directly from Proteome Discoverer and SIEVE
- Retention time prediction trained by peptide retention time standards kit
- Streamlined processing from method development to data processing
- Peptide mapping tool for analysis of recombinant proteins and biopharmaceuticals

Automated Data Processing in Pinpoint – Verification Tools

SimGlycan[®] Software for Glycomics

- Automated software package for glycomics analysis the most comprehensive software package available for glycan structural elucidation
- Key Features
 - Structural analysis/identification of glycans
 - Characterization of N-linked glycans from antibodies
 - Structural characterization of MSⁿ data (Unique to ion traps)
 - Largest commercially-available glycan database (over 9500 structures)
 - Automatically process up to 1500 input spectra
- Available through Premier BioSoft

How SimGlycan[™] Works

Database search approach

Methods Mol Biol. 2010,600,269-81

- MS/MS data are searched against SimGlycan's own database of theoretical fragmentation of over 9650 glycans
- Each proposed structure is assigned a score to reflect how closely it matches with the experimental data based on composition and branching
- Other relevant biological information for the proposed glycan structures such as the glycan class, reaction, pathway, and enzyme are also made available via interactive links

Protein Deconvolution 1.0

- Workflow software for intact protein mass determination
- User interface "borrowed" from small molecule software package
- Includes 2 deconvolution algorithms:
 - ReSpectTM for isotopically unresolved proteins (e.g. IgG)
 - Xtract for isotopically resolved proteins
- As of today, the software is feature complete and undergoing testing
- Target release date: Late October, early November

ReSpect[™] Deconvolution of Q Exactive IgG Data

G1F+G2F+SA

		ppm mass measurement errors							
RAW file	Q Exactive	G0+G0F	G0F+G0F	G0F+G1F	G0F+G2F	G1F+G2F			
1	1	-10.5	0.7	-10.5	-13.8	-18.0			
2	1	-3.2	-4.3	-6.9	3.2	N/A			
3	1	-11.6	-1.1	-8.8	-11.2	-12.0			
4	1	5.1	-5.0	-2.6	5.1	5.6			
5	2	-14.3	3.0	-6.9	-5.4	-5.9			
6	2	-8.6	-2.2	-12.2	-12.5	-12.9			
7	2	-14.3	-6.6	-12.3	-14.8	-10.1			

-6.9 +/- 6.4 ppm mass tolerance for above measurements

Protein Deconvolution 1.0

L. Protein Deconvolution (Version 1.0.37)										
Thermo Image: Manual ReSpect™(Isotopically Unresolved) Help Image: Help SCIENTIFIC Image: Manual ReSpect™(Isotopically Unresolved) Help Image: Help										
Method Selection Parameters Chromatogram	Method Selection Parameters Chromatogram Process and Review Reporting									
Select an experiment type to create a new experiment or continue a	an existing experiment.									
Experiment Types	Load Raw Data File	Methods								
Manual Ytract (Icotonically Perchad)	Raw Data Directory C:\Xcalibur\data	Experiment Name Description								
Manual ReSpect™(Isotopically Unresolved)	Select Raw Data Files C:\Xcalibur\data\IgG_source_cid-qb.raw C:\Xcalibur\data\IgG_source_cid.raw C:\Xcalibur\data\Mooglobin_30pmol_michrom_protein_microtrap_11mi	DefaultMethodReSpect Default method for ReSpect. IgG_Elite IgG_QExactive								
Load Previous Results	C:\Xcalibur\data\Myoglobin_30pmol_michrom_protein_microtrap_11mi									
۲ <u>اس</u> ۲										
۰ (III) ۲	Load	Create Method Load Method								

Protein Deconvolution Method Parameters

11. Protein Deconvolution (Version 1.0.38)										
Thermo SCIENTIFIC Protein Deconvolution IgG_Q_Exactive										
Method Selection	Method Selection Parameters Chromatogram Process and Review Reporting									
			Save Method Save Method As Reset Method							
Parameter Configuration	Parameter Configuration									
▼ Main Parameters (ReSpect [™]	▼ Main Parameters (ReSpect™)									
Charge Carrying Species		Mass								
Negative Charge		m/z Range	Min 2000 Max 4000							
Charge Carrier	H+ (1.0073) 2H+ (2.014)	Output Mass Range	Min 140000 Max 160000							
	Na+ (22.9898)	Mass Tolerance	0.05 Da							
		Target Mass	150000 Da							
		Charge State Range								
			Apply							
▼ Advanced Parameters (ReSp	ect™)									
Peak Filter Parameters		Deconvolution Parameters								
Minimum Peak Significance	1 Standard Deviations	Number of Iterations	3							
Noise Rejection	No Noise Rejection	Noise Compensation								
	68% Confidence 95% Confidence	Minimum #. Adjacent Charges	10 🛋 to 10 💌							
	© 99% Confidence	Peak Model Parameters								
Use Relative Intensities		Number of Peak Models	1							
Baseline Correction		Resolution @ 400	12374							
Peak Width	0	Left/Right Peak Shape	Left 2 Right 2							
Feature Width	0									
Degree of Fit	0									
		Ì	Apply "							

Protein Deconvolution – Chromatogram Tab

11. Protein Deconvolution (Version 1.0.38)
Manual ReSpect [™] (Isotopically Unresolved) Help
🗹 Method Selection 🛛 Parameters 🔽 Chromatogram 📄 Process and Review 📄 Reporting
Save Method Save Method As Reset Method
0
▼ Chromatogram Parameters
Use Restricted Time Types TIC -
Time Limits 0.00 🗮 to 6.23 💭 Chromatogram m/z Range 990.0137 💭 to 4041.2018
Apply
▼ Chromatogram
IgG_source_cid ProteinDeconvolution NL: 3.10E9
RT: 3.41 RT: 3.70 S#: 1171 cm 1405
≥ 100] 3#, 1403 2 3 3 RT: 4.07 4 RT: 3.57 8 RT: 3.57
5#: 267 S#: 3.09 RT: 3.09 RT: 3.24 S#: 1010 S#: 1040 S#: 2384 S#: 2937 S#: 3354 9 50-1 S#: 2017 RT: 4.27 RT: 4.27 RT: 4.27 RT: 4.45 RT: 4.45 RT: 4.45 RT: 4.45 RT: 4.45 RT: 4.45 RT: 5.47 RT: 6.00
Ki. b.l. Ki. b.l.
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 RT(min)
▼ Source Spectrum
IgG_source_cid #1098-1306_RT3.32-3.58 AV/209
2574.1155
20- 2169.7442 2169.7442 2169.7442 2169.7442

Protein Deconvolution - ReSpect[™] Deconvolution

11. Protein Deconvolution (Version 1.0.38)										
Thermo Protein Deconvolution	i_Q_Exactive		Manual Re	Spect™(Isotopically Unresolved) Help 🔅						
Method Selection Parameters Chromatogram	ess and Review 🔽 Reporting									
				Save Result As Reset Method						
Data Processing										
▼ Source Spectrum										
100 1276.6912 1581.5254 1766.2457 1922.6888 2452.2402 2667.2803 2865.4490 3037.2899 3382.0273 3535.4679 3707.8686 100 1206.6904 1383.1359 1508.7278 1659.4852 1843.7790 2025.0799 2169.7638 2373 1104 2931 2680 3001 3565 3451 4321 3619 4321 3785.7866 3981.3697 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 m/z m/z 1000 1200 1400 1600 1800 2000 2000 2000 2800 3000 3200 3400 3600 3800 4000										
▼ Deconvoluted Spectrum										
100 -	151814.359 151976.688			NL: 6.50E8						
80- 90- 40- 20- 0- 151200 151300 151400 151500 151600 151700	151800 151900 152000 mass	152138.031 152301.734 152301.734 152431. 152306 152300 152400	172 152587.859 152500 152600 152700	NL: 0.50E8						
4										
Results										
Average Mass Sum Intensity	Number of Charge States	Mass Std Dev	PPM Std Dev	Delta Mass						
Image: 151814.359 650,163,505.75 Image: 151976.688 620,266,222.28	34	1.98	13.06	0.00						
 151370.000 020,200,235.30 152138.031 444,375.805.00 	30	3.22	21.15	323.67						
 151654.422 412,616,060.50 	33	1.85	12.19	-159.94						
· 152301.734 200,146,543.38	21	4.28	28.07	487.38						
• 152431.172 176,185,474.38	26	5.17	33.94	616.81						

Protein Deconvolution - Report

11. Protein Deconvolution (Version 1.0.38)								
Thermo	G_Q_Exactive Manual ReSpect™(Isotopically Unresolved) Help							
Method Selection Parameters Chromatogram Pro	cess and Review Reporting							
🖶 🛅 🔬 - 🏀 1 / 19 🖲 🖲 146% - 🕞 🔛 🚼 Find -								
	ProteinDeconvolution Report							
Created: 9/22/2011 9:54:51 AM								
	Sample Information							
File Name	C:\XCALIBUR\Intact\IgG_source_cid.raw							
Instrument Method	C:\Xcalibur\Intact\mab_SS_1.meth							
Vial	CStk1-01:23							
Injection volume (µL)	40							
Sample Weight	0							
Sample volume (µL)	0							
ISTD Amount	0							
Dil Factor	1							
	Chromatogram Parameters							
Use Restricted Time	False							
Time Range	0.004648833 - 6.2300942							
Туре	TIC							
Chromatogram m/z Range	990.013713569749 - 4041.20183719198							
	Source Chromatogram							
IgG source cid Protein	Deconvolution NL: 3.10E9							

ProSightPC 2.0

- Software for top-down protein identification and characterization
- Created by Neil Kelleher's group at Northwestern University

Key Features

- Top-down and bottom-up protein identification
- Iterative sequence matching using Sequence Gazer[™]
- Xtract/THRASH for data reduction
- UniProt flatfile database support
- Multiplexed spectral ID
- Error tolerant identification of modifications, truncations, etc
- ProSightPC 2.0 SP1 out soon
- ProSightPC 2.1 in development (faster and more confident searches)
- Planning a ProSightPC node for Proteome Discoverer

Conclusions

- Thermo offers the most comprehensive and powerful suite of software applications in proteomics.
- The software applications work synergistically to extract information from our complex datasets.
- We can work collaboratively with 3rd parties and scientists to make new algorithms and software available.
- In 2011, we will have released or launched Proteome Discoverer 1.3, SIEVE 1.3 (+ 2 service packs), SIEVE 2.0, Pinpoint 1.1, Pinpoint 1.2, ProteinCenter, ProSightPC 2.0 SP1, SimGlycan, and Protein Deconvolution 1.0. (8 major software releases, 3 service packs!)
- Thermo Scientific is dedicated to provide the best possible proteomics software to our customers.

ProteinCard highlights

Nuclear pore complexes are extremely elaborate structures that mediate the regulated movement of macromolecules between the nucleus and cytoplasm. These complexes are composed of at least 100 different polypeptide subunits, many of which belong to the nucleoporin family. Nucleoporins are pore complex-specific glycoproteins characterized by cytoplasmically oriented O-linked N-acetylglucosamine residues and numerous repeats of the pentapeptide sequence XFXFG. The protein encoded by this gene has three distinct domains: a N-terminal region within which a pore targeting domain has been identified, a central region containing multiple zinc finger motifs, and a C-terminal region containing multiple XFXFG repeats. [provided by RefSeq]

Keywords -

Keywords:

Acetylation, 3D-structure, Nucleus, Metal-binding, Zinc-finger, mRNA transport, Transport, Nuclear pore complex, Direct protein sequencing, Protein transport, Translocation, Polymorphism, Phosphoprotein, DNA-binding, Repeat, Porin, Complete proteome, Zinc.

Functions:

 Possible DNA-binding subunit of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane.

Description:

- Nuclear pore complex protein Nup153

Nucleoporin 153kDa

SimGlycan[™] Results Page

Two Internal Identification Algorithms:

- Proteomics: SEQUEST + Protein Report
- Interoperable with Proteome Discoverer
- Small Molecule: ChemSpider

ChemSpider:

- Open web service API
- Loosely managed database collection
- Accurate mass → ID Candidates

Metabolomics Workflow with SIEVE 2.0

File Options	s Tools He Process Align	elp nment <mark>Analysis</mark>	Explore							
1.5E7 1.0E7 4.5 5.0E6 0.0E0	^{1.5E7} m/z 171.1179 (M+H) ⁺ d ₅ -Phenylalanine									
Reconstructed Ion (Blank 10 100 500 1000 5000 10000 25000 A B econstructed Ion Chromatogram Integrated Intensities RIC Details MS2 Details Trend Intensities Trend Ratios PCA plot of conc. series (trend)									
Frame Report	0.2					1:1(10.1	
MZ Lookup	0.1			2	A		**	 	10.1	
	-0.2				Highest			Lowest		
	-0.3				Conc			Conc	Blanks	
	-0.4	-	0.8	-0]).6	-0.4	-0.	.2 0	0	2 0.4
	Frames Table	Gel View Scatter Plots	Targeted Export	PCA No	rmalize Clusters(30)	b mmm at				?

ProSightPC "Error Tolerant Search"

- ProSightPC is primarily for top-down protein identification, but it can be used for bottom-up and middle-down protein identification as well
- ProSightPC has some unusual and powerful features :
 - Xtract/THRASH deconvolution:
 - All peaks are converted from *m/z* to mass lists
 - Multiplexed identification:
 - Able to identify multiple species from a single MS/MS spectrum
 - Error tolerant search
 - Use wide precursor tolerance (>500 Da) while using narrow fragment tolerance (10 ppm)
 - Can identify any type of modification, including sequence truncations, post-translational modifications, single nucleotide polymorphisms
 - Annotated modifications in UniProt are indexed into the protein databases, automatically searching previously known modifications

Error tolerant PTM identification using ProSightHT

 ProSightHT is an iterative search method for maximizing identifications in a dataset while maximizing the confidence in the results:

Results of ProSightHT on O-GIcNAc HCD/ETD data

"Delta M"	Number of ID's	Inferred Modification	
0	2046	Exact matches	
+57 Da	470	Overalkylation (N-term or K)	
-48 Da	121	Dethiomethyl (M)	
-17 Da	53	Pyroglutamic acid	
+1 Da	42	Deamidation	
+114 Da	30	2x overalkylation	
+126 Da (125.90)	29	lodo-Y	
+22 Da	27	Sodium	
+203 Da	27	HexNAc	
+9 Da	19	?	
+80 Da	19	Phosphorylation	

• These PTM's are identified without any prior knowledge of their existence

	ProSightPC ^m - C:\Share\Shannon\High Res Multiplexing\phospho_2_tophcd\phospho_2_tophcd.puf										
	Eile Edit View Experiment Tools Databases ProSightHT Iools Help										
	🗋 🚄 🖪	🙇 🛵		🗍 🏝 📕 🛅		< 🙀 🏪					
	Exp ID	Search ID	Marked Search Type	Pending Search	Best Expectatio	Matching Forms	Largest Precursor (M	lo Exp Comment	Name Status Notes		
	935	1	Absolute Mass	no	4.86e-65	21	3060.1640	HCD fragmentatio			
l ist of	6417	1	Absolute Mass	no	1.41e-48	100	3064.4418	HCD fragmentatio	Search		
	4595	1	Absolute Mass	no	7.96-47 5.66e-46	100	2750.0460	HCD tragmentatio	Coaron		
	6654	1	Absolute Mass	no	1.52e-44	98	3048.4472	HCD fragmentatio	ototuo		
experiments	6214	1	Absolute Mass	no	4.54e-44	37	3431.2980	HCD fragmentatio	Status		
	2799	1	Absolute Mass	no	9.46e-44	100	1496.6529	HCD fragmentatio			
	4245	1	Absolute Mass	no	3.27e-43	37	2698.0737	HCD fragmentatio			
	7560	1	Absolute Mass	no	4.35e-42	12	3381.2847	HCD fragmentatio			
	Grid Display Pref	erences Expe	eriment 935 Sequence Gazer								
	Ca										
	Se	quen	ce Gazer								
									NOTE: RED text denotes current selection		
	Precu	rsor Mass T	ype: Mono or Avg					Scores:	= 4 0 /		
	Fragm	ont Tolorar			Mass Type:	Mono or Ava	PS	core: 1.38E-71	51%0		
	ridgin		ice. j ba ppin				Exp	ectation: 4.86E-65	Fragments Explained		
	Δ m: (on Off					PDE	: 155.0000			
									Rescore Save Cancel		
		Difference: 79.9688 Da 26132.2000 ppm									
					hearvad: 3060	1640 🚽		Theoretical: 2990	2000		
				0	bserved, [5000.			meoreccal, 2900.	.2000		
Poculte)		-> -> -> -> ->	->	Threonine Information:		
IVE20112			□ - <mark>∏tdtntat</mark> gti	о <mark>(о</mark> (н-с-с-	e-efe-ef	G f G f G f A f	Gfafafcfcf	G <mark>(</mark> G - y11			
		bi	26 G G - E N Y - I)-D+P-H-К-				y1	Position: N:1 C:35 Amino Acid: T		
	T ahar		Francisco (Tabal) OS (m						RESID: none		
	Shove Shove	w Matching	Fragments (Total: 36 fra	igments)					Start PTM: None		
	<u>ID</u> N	ame <u>m/z</u> i	<u>Monoisotopic Mass Mon</u>	oisotopic Theore	<u>tical Mass</u> <u>Err</u>	<u>or (Da)</u> Erro	<u>r (ppm) 4 m</u>		PTM Choices:		
	1	B2	0.0000	216.0739	216.0750	-0.0007	-3.2396		None		
	2	83	0.0000	330.1170	330.1180	-0.0005	-1.5146		Custom 0		
	4	84	0.0000	401.1539	401.1550	-0.0007	-1.7450		Tier 1		
	9	814	0.0000 1	180.4421	1180.4500	-0.0074	-6.2688		GBL-anchor		
	13	816	0.0000 1	294.4936	1294.4900	0.0011	0.8498		Debudration		
	18	817	0.0000 1	351.5014	1351.5100	-0.0126	-9.3230				
	29	B19	0.0000 1	479.5700	1479.5700	-0.0026	-1.7573		Ribotlavin phosphorylation		
	35	820	0.0000 1	550.6058	1550.6100	-0.0039	-2.5152		Cysteinylation		
	40	B21	0.0000 1	521.6421	1621.6500	-0.0047	-2.8983		Sulfation		
	42	B22	0.0000 1	578.6552	1678.6700	-0.0131	-7.8039				

37

ProSightPC Identification of Histone proteins

Figure 1 from Garcia et al, Nature Methods 2007

- **Glycoproteomics** is the study of the profile of glycosylated proteins, i.e. the glycoproteome, in a biological system
- **Glycomics** is the study of glycome (repertoire of glycans)

 SimGlycan[™] is for the Glycomics Market, focusing on released glycans

