Multiplexed LC-MS/MS SRM Assay for Parathyroid Hormone (PTH) and Variants: Correlation with Current Clinical Immunoassay Methods

Bryan Krasting1, Mary F Lopez1, Amol Prakash1, David Sarracino1, Dobrin Nedlekov1, David R Barnidge2, Randall W Nelson3, Paul Oran3, Linda Benson2, Robert H Berger2, Jolaine Twentyman2, Ravinder J Singh2, Andrew Hoofnagle4

1Thermo Fisher Scientific BRIMS Center, Cambridge, MA, USA; 2Mayo Clinic College of Medicine, Rochester, MN; 3Arizona State U, Tempe, AZ; 4U of Washington, Seattle, WA USA
Overview

Purpose: Apply an LC-MS/MS SRM assay in addition to two commercially available immunoassays to a cohort of clinical samples and monitor intact and truncated parathyroid (PTH) isoforms.

Methods: A single cohort of IRB approved clinical serum samples was distributed between three laboratories. Mass spectrometry and sample preparation were as previously described.

Results: Comparison of the MSIA–SRM assay with the commercial ELSA assays demonstrated good correlation.

Introduction

The heterogeneity of PTH has traditionally been an impediment to the development of assays that distinguish full length PTH (PTH1-84) from N-terminally truncated PTH (PTH 7-84 and others). Because intact and truncated forms of PTH vary in their biological activity, assays that can accurately quantify the ratio of intact hormone to its fragments are of increasing significance in the diagnosis of endocrine and osteological diseases. To date, most immunoassays used to monitor PTH levels are based on traditional sandwich ELISA methods and cannot accurately discriminate intact from truncated PTH. In addition, these methods typically employ primary antibodies to the N-terminus of the hormone, thereby preventing quantification of any fragments. Previously, we developed multiplexed SRM assays for PTH that allow quantification of four fully-tryptic monitoring peptides (that span the entire PTH sequence) and two semi-tryptic variant specific peptides. Using this approach, it is possible to monitor intact PTH and also the degree of N-terminal fragmentation. In this study, the objective was to apply the LC-MS/MS SRM assay in addition to two commercially available immunoassays to a cohort of clinical samples and monitor intact and truncated PTH isoforms. In addition the correlation between the three assay measurements was determined.

Methods

A single cohort of IRB approved clinical serum samples was distributed between three laboratories. Mass Spectrometry and sample preparation were as previously described. Immunoassays (Beckman, Cobas) were run according to manufacturer’s instructions. Samples were measured after refrigeration at all sites and a best fit algorithm was determined using log-transformed data. This optimized the fit at low values. Data were plotted as un-transformed data points.

Results

Peptides exhibited linear responses ($R^2 = 0.90–0.99$) relative to recombinant human PTH concentration. The limits of detection were 8 ng/L and limits of quantification were of 16 to 32 ng/L depending on the peptide. Comparison of the MSIA–SRM assay with the commercial ELSA assays demonstrated good correlation.
FIGURE 2. The large dynamic range of proteins in blood presents a technical hurdle for the development of low-abundance analytes. The reference range for parathyroid hormone (PTH) is 1 pmol/L or 10-60 pg/mL, making it one of the lowest abundance clinically important analytes.

FIGURE 2. MSIA (Mass Spectrometric Immunoassay)-SRM workflow for enrichment and quantification of low abundance proteins.

In order to develop a sensitive assay with sequence specificity for PTH, we coupled immuno-enrichment at the protein level with detection at the peptide level using SRM-MS. This approach allows rapid and automated enrichment with the selective detection and quantification of intact and variant forms of PTH. The active site of the PTH protein is from aa1-10. N-terminally truncated variants may confound immunoassays that do not distinguish intact from truncated forms of the protein.

- MSIA achieves higher sensitivity than any other methods tested
 - Easily accommodate large sample volume range (10 μL-10 mL)
 - Forced contact of analyte with AB in the tip increases binding efficiency
 - Repeated binding cycles (up and down in pipette tip) add capacity and sensitivity
- Scalable concentrations of antibody and multiplexing antibodies on tips
- Can use commercially available, FDA validated antibodies
- More economic and much more sensitive than magnetic or other beads
Previous top down analyses of PTH in clinical samples revealed a large degree of heterogeneity and truncated variants, principally at the N-terminus (1). In order to quantify intact and truncated forms, we chose 4 fully tryptic and 3 semi-tryptic (variant specific) peptides for the multiplexed SRM assay.

![PTH Variant Map](image)

FIGURE 4. Ten point calibration curve for peptide SVSEIQLMHNLGK. The values ranged from 0-2000pg/mL. CV’s of triplicate points ranged from 1-19%. The R^2 was 0.978. Calibration curves for peptides HLNSMER, ADVNLTK and LQDVHNFVALGAPLAPR demonstrated similar linearity and precision.

![Calibration Curve](image)
FIGURE 5. Correlation between Cobas immunoassay and MSIA-SRM assay.

![Correlation graph between Cobas immunoassay and MSIA-SRM assay.](image)

FIGURE 2. Correlation between Beckman and Cobas immunoassays.

![Correlation graph between Beckman and Cobas immunoassays.](image)

TABLE 1. Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Beckman</th>
<th>Cobas</th>
<th>Beckman</th>
<th>Cobas</th>
<th>Beckman</th>
<th>Cobas</th>
<th>Beckman</th>
<th>Cobas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>0.98</td>
<td>0.95</td>
<td>0.96</td>
<td>0.98</td>
<td>0.97</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>1.00</td>
<td>0.92</td>
<td>0.96</td>
<td>0.97</td>
<td>0.96</td>
<td>0.76</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.98</td>
<td>0.96</td>
<td>0.95</td>
<td>0.98</td>
<td>0.97</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>0.86</td>
<td>0.99</td>
<td>0.89</td>
<td>0.97</td>
<td>0.89</td>
<td>0.97</td>
<td>0.71</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>0.86</td>
<td>0.99</td>
<td>0.92</td>
<td>0.96</td>
<td>0.97</td>
<td>0.96</td>
<td>0.76</td>
<td>0.71</td>
</tr>
</tbody>
</table>

This information is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others.
TABLE 1. Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Cobas</th>
<th>Beckman</th>
<th>SVS</th>
<th>HLN</th>
<th>LOD</th>
<th>ADV</th>
<th>VAL</th>
<th>FVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobas</td>
<td>1.00</td>
<td>0.98</td>
<td>0.92</td>
<td>0.95</td>
<td>0.97</td>
<td>0.89</td>
<td>0.76</td>
<td>0.96</td>
</tr>
<tr>
<td>Beckman</td>
<td>0.98</td>
<td>1.00</td>
<td>0.96</td>
<td>0.98</td>
<td>0.99</td>
<td>0.86</td>
<td>0.71</td>
<td>0.95</td>
</tr>
<tr>
<td>SVS</td>
<td>0.92</td>
<td>0.96</td>
<td>1.00</td>
<td>0.97</td>
<td>0.96</td>
<td>0.78</td>
<td>0.65</td>
<td>0.87</td>
</tr>
<tr>
<td>HLN</td>
<td>0.95</td>
<td>0.98</td>
<td>0.97</td>
<td>1.00</td>
<td>0.97</td>
<td>0.81</td>
<td>0.68</td>
<td>0.90</td>
</tr>
<tr>
<td>LOD</td>
<td>0.97</td>
<td>0.99</td>
<td>0.96</td>
<td>0.97</td>
<td>1.00</td>
<td>0.87</td>
<td>0.72</td>
<td>0.96</td>
</tr>
<tr>
<td>ADV</td>
<td>0.89</td>
<td>0.86</td>
<td>0.78</td>
<td>0.81</td>
<td>0.87</td>
<td>1.00</td>
<td>0.70</td>
<td>0.90</td>
</tr>
<tr>
<td>VAL</td>
<td>0.76</td>
<td>0.71</td>
<td>0.65</td>
<td>0.68</td>
<td>0.72</td>
<td>0.70</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>FVAL</td>
<td>0.96</td>
<td>0.95</td>
<td>0.87</td>
<td>0.90</td>
<td>0.96</td>
<td>0.90</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>

FIGURE 5. Correlation between MSIA-SRM and Beckman immunoassay.

Conclusion

- The commercial immunoassays correlated well with each other.
- The MSIA-SRM assay correlated very well with both commercial immunoassays.

References

For Research Use Only. Not for use in diagnostic procedures.

All trademarks are the property of Thermo Fisher Scientific and its subsidiaries.

This information is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others.
Thermo Fisher Scientific, San Jose, CA USA is ISO Certified.

PN63591_E 06/12S

Africa-Other +27 11 570 1840
Australia +61 3 9757 4300
Austria +43 1 333 50 34 0
Belgium +32 53 73 42 41
Canada +1 800 530 8447
China +86 10 8419 3588
Denmark +45 70 23 62 60
Europe-Other +43 1 333 50 34 0
Finland/Norway/Sweden +46 8 566 468 00
France +33 1 60 92 48 00
Germany +49 6103 408 1014
India +91 22 6742 9434
Italy +39 02 950 5919
Japan +81 45 453 9100
Latin America +1 561 688 8700
Middle East +43 1 333 50 34 0
Netherlands +31 76 579 55 55
New Zealand +64 9 980 6700
Russia/CIS +43 1 333 50 34 0
South Africa +27 11 570 1840
Spain +34 914 845 965
Switzerland +41 61 716 77 00
UK +44 1442 233555
USA +1 800 532 4752

www.thermoscientific.com

©2012 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.